Lab 2 Classical Approximating Functions Fall 2024

Classical approximating functions are widely used in specifying the performance requirements of a filter. The most common classical approximating functions are the Butterworth, the Chebyschev, the Elliptiic, and the Thompson/Bessel functions. This experiment will focus on the classical approximating functions.

Part 1

- a) Give the 6th-order Butterworth and Chebyschev approximations for a unity gain lowpass function with a 3dB band edge of 1 rad/sec in rational fraction form.
- b) Plot the magnitude and phase responses of these two approximations and compare their performance.
- c) Give the 6th-order Butterworth and Chebyschev approximations with the same specifications as in part a) but with a 3dB band edge of 5KHz

Part 2

The Chebyschev approximation is based upon the Chebyschev polynomials with a magnitude squared approximation of

$$H_{CC}(\omega, n, \varepsilon) = \frac{1}{1 + \varepsilon^2 C_n^2(\omega)}$$

where $C_n(\omega)$ is the n-th order Chebyschev polynomial. Though $C_n(\omega)$ is an odd function for n odd, by squaring this function, an even function in ω is obtained for $H_{CC}(\omega,n,\varepsilon)$. But $C_{n-1}(\omega)$ is even for n even. Consider the following magnitude-squared approximating function

$$\hat{H}_{CC}(\omega, n, \varepsilon) = \frac{1}{1 + \varepsilon^2 C_{2n}(\omega)}$$

Is $\hat{H}_{cc}(\omega, n, \varepsilon)$ a useful magnitude-squared approximating function and, if so, compare the performance of $\hat{H}_{cc}(\omega, 3, 1)$ and $H_{cc}(\omega, 3, 1)$.

Part 3

Obtain the minimum-order Butterworth approximation that meets the performance requirements shown. Plot the magnitude response to show that it meets the specified performance requirements.

